
www.manaraa.com

Intra-Vehicle Information Security Framework

Hagai Bar-El

Rev. 1.2

Abstract

This paper presents an internal information security ser-
vices framework for vehicular environments. The frame-
work consists of a logical toolbox — a set of logical
modules that are installed in a variety of embodiments
(e.g., controllers) and which provide security functional-
ity that vehicular applications require. The framework
also includes several enablers, which are higher-level se-
curity functions that are integrated into vehicular appli-
cations. These enablers use the aforementioned tools to
provide for many typical use-cases, such as secure log-
ging, secure code update, and secure feature activation.

The purpose of the toolbox is to provide some of
the common security functions at the highest effective
abstraction level, and to implement these functions se-
curely in well suited embodiments. This detachment of
security functions from the applications that use them
shall allow developers to develop secure applications
without requiring extensive security know-how, as well
as to reduce the attack surface of their applications.

1 Introduction

1.1 The Motivation

Vehicles are increasingly utilizing, and becoming reliant
on, information technologies. Digital technologies of sig-
nal and information processing are becoming common
in luxury cars today, and are foreseen to become even
more common in additional vehicles during the coming
years. Information technologies are common in car mul-
timedia devices today, as well as in GPS navigation de-
vices. Some car models also deploy digital circuits that
collect data that is later used for maintenance and for
troubleshooting. Information systems technologies are
planned to be introduced to other aspects of the vehi-
cle’s functionality. For example, vehicles are planned to
communicate with each other and with roadside infras-
tructure components for various purposes ranging from
safety to commerce.

As soon as information technologies are involved in
the processing of assets of any kind, security risks arise.
Information technology components in vehicles need not
only be extremely reliable and bug-free, but they also
need to be extremely resistant to malicious attacks. The
magnitude of assets that may be involved in a vehicular

information technology system, as well as the fact that
the owner of the vehicle, who naturally has unlimited
physical access to it, may in some cases form part of
the threat, make protection of the assets involved even
more complex. Concerns of ‘cyber-terrorism’, as well
as the fact that the conformance of a vehicle with its
perceived behaviour attributes directly to the life-safety
of its passengers, further magnifies the risks, and thus
the level of protection required.

The risks involved, along with the fact that a vehicle
has a long typical lifetime (in information technology
terms), implies that information security assurance has
to be done properly, and hopefully — done properly
from the start.

This paper presents an intra-vehicular information se-
curity framework. A discussion of the motivation for
deploying information security facilities in a vehicle, be-
yond what is written above, is strictly outside the scope
of this document. This paper assumes that the reader
appreciates the need for information security-assuring
functions in a vehicle. Accordingly, the paper hereafter
focuses on the ‘how’ rather than on the ‘why’.

1.2 Internal vs. External Security
Aspects

There are essentially two major domains in which infor-
mation security concerns need to be addressed: inter-
vehicle and intra-vehicle, or: external and internal do-
mains, respectively. These domains, as explained below,
consider the vehicle information system as a single en-
tity, although in practice it is likely to consist of many
detached components.

The external domain involves the connectivity of the
vehicular components with entities that are external to
the vehicle. This domain deals with the possible attack
vectors that involve exploitation of protocol flaws, either
at the network layer or at the application layer. This do-
main disregards local attack vectors that involve access
which is not by the known and approved communication
interfaces with entities outside the vehicle. An example
of an attack that is addressed as part of the external
domain of security is an attack that uses a protocol flaw
to introduce fake hazard messages that appear to come
from a roadside beacon, while they actually come from
an attacker’s home network; an attacker who prefers
traffic to not be routed through his neighborhood. Also



www.manaraa.com

Intra-Vehicle Information Security Framework

covered by this domain are DoS1 attacks over the net-
work interfaces.

The internal domain of information security consid-
ers the robustness of the in-vehicle components against
local attacks. Local attacks are such that subject the at-
tacked components to actions that are not (only) in the
form of communication to and from their external ports.
Among these attacks are physical attacks against the
various embodiments of the information technology com-
ponents (both invasive and non-invasive), and attacks
on the interfaces between trusted components within
the domain of the vehicle. API attacks also fall within
this domain, as long as they involve exploiting interfaces
between components inside the vehicle.

Distinction as described above is clearly not the only
way to view external and internal aspects of security.
For example, when treating each component of the ve-
hicular system as an independent entity, attacks against
it by other in-vehicle components through its API may
be considered as external attacks; whereas internal at-
tacks would only consist of attacks against the physical
implementation of the component. Nevertheless, our
approach of seeing the entire vehicle as a single entity,
composed of a collection of mutually-trusting units that
trust each other but not their connectivity, allows us
to classify security considerations in a more pragmatic
way, by allowing a clearer separation of responsibilities
between an intra-vehicle framework and outward-facing
applications.

1.3 What We Aim to Provide

Both the internal domain and the external domain of
information security concerns have to be addressed. In
this paper, which describes an intra-vehicle information
security framework, we focus on the internal domain.

Security of the external domain relies on the proto-
cols used by the vehicle to communicate with external
entities. These protocols range from the network-level
protocols (such as TCP/IP), to application-specific pro-
tocols for particular C2I and C2C2 interactions. No sub-
stantive security functionality can be introduced that is
not directed by the exact specification of these proto-
cols. Since agreement on these protocols is required for
interoperability, these protocols are defined and adopted
based on strong market forces. Unfortunately, the au-
thor at the time of writing is not positioned to deter-
mine the design of these protocols and their selection.
On the other hand, securing internal aspects of the ve-
hicular system involves design decisions that are within
the scope of a vehicle manufacturer to make. Conse-
quently, in the internal domain it is more likely for the
author’s contribution to make a difference.

In this paper, we will attempt to help securing the
1Denial of Service
2“Car to Infrastructure” and “Car to Car”, respectively.

vehicular information system from the internal domain
perspective, by introducing a toolbox. This toolbox is
aimed at providing several discrete functions (‘tools’),
publishing well-defined APIs, in a way that relieves
client applications from the need to address some of the
security concerns involved with the applications, to the
extent that it is feasible (see Section 2.1 for a discussion
of the goals of the toolbox.) The tools provide functions
that also enable securing the client-side modules of C2C
and C2I systems, from the internal domain perspective,
as will become evident from reading their descriptions
below.

The architecture presented in this paper is part of a
larger effort made to develop a complete intra-vehicle
information system security solution, which consists of:

� low level enablers (the toolbox), which provide core
security functionality that is specific for vehicular en-
vironments;

� embedded applications that utilize components of the
toolbox to provide for common vehicular use-cases;
and

� the API required for third party providers to use the
functionality offered by the toolbox for other applica-
tions as well.

This paper presents some of the components of the
security toolbox (in Section 3), and a few applications
that utilize these components (in Section 4).

Lastly, this paper discusses a design that is to a large
extent still “work in progress”. The reader is encour-
aged to treat implementation details, such as proposed
protocols and structures, with due care.

2 Design Goals

2.1 Toolbox Design Goals

Our goal for the design of the toolbox, which is detailed
in Section 3 (pp. 3), is to provide a set of security func-
tions that are specifically tailored for a vehicular infor-
mation system. The purpose of the toolbox is not just
to offload security-related efforts from the developers
of vehicular applications, but mainly it is to reduce the
need for security assurance (and possibly — compliance)
for as many components as possible, and to the extent
feasible, while (and as a result of) decreasing the attack
surface of the applications.

The toolbox differs from typical “crypto-modules” by
the types of functions it provides. These functions are
not typical low-level cryptographic functions such as the
ones provided, e.g., by PKCS#11 [11] or by smartcards.
Rather, these are higher-level functions that are tailored
to vehicular systems. The provision of higher-level func-
tions sacrifices being general-purpose in return for pro-
viding better vertical coverage in a given environment.

2



www.manaraa.com

Intra-Vehicle Information Security Framework

The tools that form the toolbox are not as useful as
other cryptographic modules for non-vehicular environ-
ments, but in vehicular environments they provide a
higher level of abstraction, implying better coverage and
more effective offloading of security functionality.3

The toolbox is aimed at allowing vendors to produce
secure applications without having to deal (as exten-
sively) with developing core security functionality as
part of the applications. When defining the functions
that the toolbox provides, we sought the set of high-
est common denominators of security functions that are
used by a typical set of vehicular security-aware applica-
tions. For example, if many vehicular applications need
to store data objects securely, we prefer to provide a tool
that securely stores opaque data objects over providing
a general-purpose encryption service that the applica-
tion shall use to facilitate its own secure storage. For
more information on this example see the Secure Reg-
istry Tool in Section 3.5 (pp. 7).

By offloading (any) functionality from the client ap-
plication, we reduce its development cost; but there is
much more to it. We aim towards the asymptotically-
reachable (but never completely reachable) situation in
which proper integration with the tools of the toolbox
is the only security-related design effort the vendor of
an application needs to take to make his application
secure. Obviously, this target to its fullest extent is un-
reachable. Not only that tools for all purposes cannot
possibly be conceived, but some security considerations
(derived from possible security lapses) will ordinarily
sneak into every design of a security-related applica-
tion. Even an application that processes secure data
using the most secure and comprehensive tools, might
inadvertently leak data that it processes, due to security
flaws.

Notwithstanding, by striving to find the highest com-
mon denominators of security-related functionality, that
is, by designing the toolbox to carry out as much of
the security-related functionality as possible, and by em-
ploying all security practices in the implementation of
this toolbox, we effectively reduce the attack surface of
the client application; a worthwhile goal in its own.

A secondary design goal that dictated the selection of
tools is the preference to implement security functions
that also involve interoperability between controllers in
the vehicle. Whereas some of the tools are incorporated
directly into the controllers that use them, there are
other tools that are hosted by external embodiments,
and that serve a plurality of controllers. In such cases,
the advantage of having the tool is not limited to the
offloading of security concerns from the application, but
also include the provision of new features that rely on

3As a side note, higher levels of abstraction for cryptographic
services also imply easier compliance with restrictions on import,
export, and usage of cryptography. This is due to the product
being non-general-purpose. Notwithstanding, the addressing of
such compliance issues is not a design goal of the toolbox.

interaction between multiple controllers, made possible
through the tool. For example, by providing a tool for
centralized secure storage, as described in Section 3.5
(pp. 7), rather than having each controller store its own
data securely, we obtain an important benefit: the abil-
ity of controllers to share data securely among them.

2.2 Application Enablers Design Goals

Our goal for the design of the application enablers de-
tailed in Section 4 is to provide a useful set of security
applications that utilize components of the toolbox.

When determining the set of applications to provide,
we try to foresee as many of the security related ap-
plications as possible that vehicle makers may require.
This set of applications may be seen as a sample set,
demonstrating the usefulness of the toolbox.

Obviously, we design the applications to be as robust
as possible against the foreseen and documented types
of threats that these applications may be subject to.
We design the applications securely from the ground
up, beyond basing them on components of the toolbox.

3 Architecture of the Security
Toolbox

3.1 Overview

The toolbox components presented in this section are
designed to meet the goals described in Section 2.1. Sub-
section 3.2 briefly describes the hardware cores that are
used to implement the functionality of the toolbox com-
ponents. Subsequent subsections describe some of the
particular tools that are offered by the toolbox: key
distribution for interconnection between controllers in
Section 3.3 (pp. 4), a higher-level secure messaging func-
tion in Section 3.4 (pp. 6), a secure data registry in Sec-
tion 3.5 (pp. 7), a code authentication tool in Section 3.6
(pp. 9), a trusted time tool in Section 3.7 (pp. 10), and
a key provisioning tool in Section 3.8 (pp. 13).

3.2 Underlying Core

The ‘tools’, as referred to in this paper, are logical func-
tions that are implemented by various physical embodi-
ments.

The main embodiment that is used to implement
some of the tools, as well as some of the application en-
ablers, is a self-contained security module utilizing hard-
ware encryption engines, a local processor, RAM, ROM,
connected mass non-volatile storage, and on-chip non-
volatile storage, such as in the form of EEPROM. The
embodiment itself is physically protected against physi-
cal tampering, and against the exploitation of physical
side channel attacks. The ciphers are designed to be re-
sistant to logical and physical side-channel attacks, such

3



www.manaraa.com

Intra-Vehicle Information Security Framework

as timing attacks, power analysis attacks, and fault at-
tacks. The processor is used to execute locally-stored
instructions that implement the functions consisted by
the tools. These functions publish the specified API over
the system bus on which the embodiment is installed.

Some of the tools are implemented as much smaller
IP cores that are incorporated into existing controllers
in the vehicle. These IP cores implement functions that
have to be provided by the same controller that runs the
application that uses these functions. For example, for
the Code Authentication Tool of Section 3.6 (pp. 9) to
be effective, it must perform its main function of code
verification on the same controller that runs the verified
code. As another example, when keys are securely de-
livered to a controller using the Key Distribution Tool
of Section 3.3 (pp. 4), their delivery must utilize cryp-
tographic assets that are securely maintained on that
same destination controller.

Some of the tools incorporate both a ‘server-side’ that
runs on a ‘main embodiment’ as described above, and a
lightweight ‘client-side’ that runs on the controllers on
which the client applications run.

3.3 Key Distribution Tool

3.3.1 Purpose

The first tool that is provided by the toolbox is a key
distribution function. The purpose of this function is to
allow any two controllers that share a key with a Mas-
ter Controller (such as the one presented as the ‘main
embodiment’ in Section 3.2, playing the ‘server-side’) to
have a session-specific key that is available to both of
them and which is neither known to, nor obtainable by,
any other component in or out of the vehicle.

The necessity of such a tool is clear: a vehicle may
host a large set of controllers (more than 80 electronic
control units per vehicle of certain types [3], or between
30 and 300 controllers [9]). At least some of these con-
trollers need to communicate securely with each other,
and some of these controllers may arrive from different
vendors. Regardless of the type of inter-controller com-
munication, direct and secure communication between
two controllers requires pre-shared key material.4 The
objective of the Key Distribution Tool is to provide the
participating controllers with this shared key material,
in runtime and upon need.

The use of keys that are valid for a session, rather
than permanent keys, also has its rationalé. It allows to
easily and centrally revoke the ability of a controller to
communicate with other controllers in a vehicle at any
time during the vehicle’s (long) lifetime. Also, there is a

4It is possible to establish secure communication using public
key cryptography, which does not require pre-established key ma-
terial between the two corresponding controllers. However, the
use of PKI (based on RSA, at least) for inter-controller communi-
cation is often considered impractical in vehicular environments,
due to the short required response time (typically up to 1 ms, ac-
cording to [9]).

cryptographic need for short-term session-keys in light
of the amount of data that is likely to be involved in
inter-controller communication throughout the lifetime
of the vehicle.

The Key Distribution Tool assumes that every con-
troller that uses it has one 256-bit shared symmetric
key with the aforementioned Master Controller, where
the ‘server-side’ of the tool is installed. Initial provision-
ing of this key can be done using the Provisioning Tool
specified in Section 3.8 (pp. 13). The Provisioning Tool
allows controllers to be enrolled with their keys either
at a manufacturer’s facility or later, also over untrusted
links.

Once the two controllers obtained the key material
using the Key Distribution Tool, they may use it to
communicate securely. It is up to the client application
to actually use the key it received from the tool to en-
crypt and/or sign data, decrypt and/or verify it, etc.
A second tool, the Secure Messaging Tool presented in
Section 3.4 (pp. 6), is provided for client applications
that prefer the message processing to be carried out by
the toolbox. The Secure Messaging Tool utilizes the
Key Distribution Tool and implements message security
over it.

The Key Distribution Tool is a fundamental one and
is therefore detailed in the following subsection more
extensively than other tools.

3.3.2 Method

The Key Distribution Tool carries out a well defined and
specified key generation protocol on the Master Con-
troller and uses the pre-provisioned key each controller
has with the Master Controller to deliver the generated
keys securely. Keys are delivered upon request of the
controllers that need to communicate with other con-
trollers; just before communication, or upon boot.

3.3.2.1 Embodiment The Key Distribution Tool
is implemented in two parts. One part implements the
Master Controller (the ‘server-side’) and is installed on
one or more embodiments (for load balancing and redun-
dancy). The other part is smaller in size and is required
to be installed as embedded logic on each controller that
uses this tool. This second part (the ‘client-side’) con-
tains the minimal secure storage for storing the single
shared key with the Master Controller, as well as the
simple logic required for the execution of the protocol.

3.3.2.2 Flow Key generation and distribution by
the tool is accomplished by steps as described herein
and illustrated in Figure 1:

1. When a controller, i, needs to communicate with an-
other controller, j, for the first time since system

4



www.manaraa.com

Intra-Vehicle Information Security Framework

boot, it sends a request to the Master Controller for
a shared session-key Si,j .

2. Alternatively, controller i may perform the above re-
quest for key Si,j for a given j before the need occurs,
e.g., based on a probable future need. For example,
controller i may request keys Si,j for any j identi-
fying a controller it may ever need to communicate
with, upon system boot.5

3. Upon need to communicate with controller j, and
given that controller i possesses shared session-key
Si,j , controller i uses it as the shared key with con-
troller j, in accordance with the communication pro-
tocol defined by the client application. Controller j,
if not yet possessing Si,j , requests it from the Master
Controller in a similar way.

4. Both controller i and controller j may cache the value
of shared session-key Si,j at most until the system is
powered off. The shared session-key Si,j for given i
and j remains constant throughout the power cycle.
If the Master Controller is asked for Si,j once again
before power-down, the same value will be returned.
It is therefore possible for one controller to cache the
key while the other has no cache and requests the key
each time it is needed. In this case, the controller
that does not cache the key shall consider the effect
this behavior may have on its response time.

Figure 1: Session-key distribution flow

The request for Si,j is done using the protocol speci-
fied in Protocol 1, where C is the requesting controller,
identified by i, and M is the Master Controller. j de-
notes the identity of the controller for which Si,j is re-
quested. Multiple values of j may be included in the re-
quest, which will lead to multiple key responses. E(k, x)
denotes the authenticated encryption of message x us-
ing symmetric key k. Authenticated encryption may be

5Although the total number of controllers in a system may
reach the hundreds, it is not likely that any single controller i
(other than the Master Controller) is ever to communicate with
all (or even with most) other controllers. Therefore, a scenario
in which each controller, upon system boot, requests keys for all
controllers it may communicate with, is considered feasible and
likely.

achieved using the AES block cipher [5] in supporting
modes, such as: CCM [4], CWC [7], EAX [1], OCB
[10], or Galois/Counter [8]. Ki denotes the permanent
controller key that is shared between controller i and
the Master Controller (see assumptions in Section 3.3.1).
This key can be initially provisioned using the Provision-
ing Tool specified in Section 3.8 (pp. 13). The value of
n is a nonce value generated by C, once per boot.

Protocol 1 Shared session-key acquisition protocol

C →M ‘REQ.C.SACQ.V1.00’, i, n, [j1, [j2, . . .]]
C ←M ‘RESP.M.SACQ.V1.00’,

E

(
Ki,

(
i, n, [(j1, Si,j1 ), [(j2, Si,j2 ), . . .]]

))

3.3.2.3 Key generation and delivery The
shared session-key Si,j is computed by the Master
Controller based on an internal secret key of the Master
Controller, a session nonce, and the values i and j.

The acquisition protocol in Protocol 1 is built to allow
only controller i to be able to obtain the value of Si,j

(for any j), possibly for more than one instance of j.
A controller cannot request for arbitrary values of Si,j ,
because the result will always be encrypted using Ki

(the controller key) of the same i for which Si,j was
computed. The value of Si,j is computed in a way that
∀i, j Si,j = Sj,i so that when controller j makes the
request for S, the same value of S will be returned as
was returned to i.

To determine the value of Si,j , given the values of
i, j, s (an optional 256-bit internal secret key held by
the Master Controller), and b (a random 256-bit session
nonce generated upon boot and kept by the Master Con-
troller), the following computation is done.

T ←
{

H(j, i, s, b) i > j
H(i, j, s, b) i ≤ j

Si,j ← MSB256(T )

The function H(x) denotes a secure hash function,
running with input x. Input x is represented as a set
of comma-separated elements. The hash function is run
on a concatenation of structures that contain the listed
data elements.

3.3.2.4 Implementation performance considera-
tions The functionality that is carried out by the Mas-
ter Controller (and more so — by the other controllers)
for computing S was designed to be simple enough to
be implemented by hardware logic, without the need
for a processor or for software. It is foreseen that this
operation may be done frequently during run-time, and
might form a bottleneck on the performance of the con-
trollers in the system if executed too slowly. Moreover,

5



www.manaraa.com

Intra-Vehicle Information Security Framework

the functionality of the Master Controller is defined in
a way that makes it easily distributed among two or
more identical Master Controllers, without the need for
mutual locks or semaphores.

3.4 Secure (Intra-Vehicle) Messaging
Tool

3.4.1 Purpose

The Key Distribution Tool presented in Section 3.3 al-
lows two controllers to use a shared key each of them
has with a Master Controller to establish a session-key
that is shared between them. Once this key is obtained,
the controllers can use it with cryptographic schemes of
their choice to secure messages sent between them. As
an alternative, the controllers can use the Secure Mes-
saging Tool presented in this section to facilitate secure
messaging based on the agreed key. The Secure Mes-
saging Tool uses the Key Distribution Tool to obtain
a shared session-key for secure messaging. If the vehi-
cle already uses another scheme to disseminate keys to
controllers, such as the one presented in [9], the Secure
Messaging Tool can utilize the resulting key material for
secure messaging.

The purpose of the Secure Messaging Tool is to take a
shared symmetric key between two controllers, and pro-
vide for secure message interaction between these two
controllers.

It is important to point out that the Secure Messaging
Tool does not implement the communication sockets. It
builds on the existing message (e.g., packet) transmis-
sion mechanism that the interacting controllers already
utilize. It is not the intent of the Secure Messaging Tool
to replace the existing intra-vehicle network infrastruc-
ture. The tool adds security assurances to the existing
message-based delivery that is assumed to already be
available.

The tool is also agnostic to the contents of the mes-
sages it processes. It is designed for adding a security
wrap to messages that applications send normally be-
tween physically separate controllers.

3.4.2 Method

The tool provides for message security by publishing a
library of message processing functions to the controller
it is installed on. The tool processes the messages to
provide:

� assurance that the messages cannot feasibly be de-
ciphered by any but the intended destination con-
troller/s;

� assurance that the messages cannot feasibly be mod-
ified in transit without this fact being detected upon
message arrival;

� assurance that messages cannot feasibly be replayed,
or otherwise taken out of context, without this fact
being detected upon message arrival; and

� assurance of the time at which messages were sent,
when used in conjunction with the Trusted Time Tool
of Section 3.7 (pp. 10).

All the above security properties are provided to all
messages that the tool processes. Allowing the ability
to switch security features off, or to determine protec-
tion strength on a per-message basis, may offer small
performance increases, but risks security faults due to
misuse. The paradigm of “there is only one mode, and
it is ‘secure’.” is desired whenever the cost of observing
it is not too high.6

3.4.2.1 Embodiment The tool is embodied as em-
bedded IP in each controller that sends and/or receives
secure messages to and/or from other controllers. The
tool publishes a library to applications on the controller
that allows applications to provide plain-text outgoing
messages for encryption, as well as to provide incoming
enciphered messages for decryption and verification.

3.4.2.2 Interface The interface that the tool pro-
vides is straightforward, and primarily consists of the
following functions:

SetTimeParams
If the Trusted Time Tool described in Section 3.7
(pp. 10) is also installed, allows it to signal the cur-
rent time. This function also allows setting of fresh-
ness threshold parameters.

PeerInit
Accepts an ID of a destination (or source) con-
troller, and initiates a context against this con-
troller, including the obtainment of a session-key,
e.g., a shared session-key from the Key Distribu-
tion Tool specified in Section 3.3 (pp. 4).

SendMessage
Accepts a plain-text message and an ID of a desti-
nation controller (that shall match the ID used in
PeerInit), and returns a protected message struc-
ture. Optionally, if the Trusted Time Tool is also
installed, a secure time-stamp can be included in
the protected message structure.

ReceiveMessage
Accepts a protected message structure that was
originated by a SendMessage call on another con-
troller, and returns the plain-text message, as well
as a message status code (explained below). If the
message also includes a secure time-stamp, the time
included in it is also returned.

6One of the best examples for this paradigm in action is in
Skype. The user of Skype does not need to do, or even know,
anything about security. Yet, as long as his password is safe, he
enjoys decent call privacy. (Details on the security scheme used
in Skype can be found in [2].)

6



www.manaraa.com

Intra-Vehicle Information Security Framework

PeerTerminate
Accepts an ID of a peer controller and re-
moves its context. Using SendMessage and/or
ReceiveMessage with this peer controller again
will require execution of PeerInit.

The message status code that is returned by the tool
along with each decrypted message holds at least the
following indications:

1. The message is valid and contains a time-stamp.
2. The message is valid and does not contain a time-

stamp.
3. The message could not be decrypted because it may

be destined to another controller.
4. The message was decrypted, but its signature check

failed, implying that the message was illegally modi-
fied in transit. (In this case, the plain-text message
is not returned.)

5. The message was decrypted and the signature is valid;
however, it may have been replayed or taken out of
its context.

6. The message was decrypted, the signature is valid,
and so is the context; however, the message has a se-
cure time-stamp attached to it, which indicates that
the message is too old to be considered valid.

The existence of a time-stamp is indicated by the mes-
sage status code for successfully decrypted (and valid)
messages to make it more intuitive for applications that
require time-stamped input to reject messages without
a time-stamp.

3.5 Secure Registry Tool

3.5.1 Purpose

The purpose of the Secure Registry Tool is to provide
a central secure storage facility for all applications run-
ning on various controllers. This secure storage keeps
any type of information that applications may need to
store securely, and assures to a feasible extent that:

� data cannot be obtained by other applications, unless
explicitly authorized;

� data cannot be changed by other applications, unless
explicitly authorized;

� data can neither be obtained nor changed by physical
access to the embodiment of the registry.

There is a vast number of vehicular applications that
may require the secure registry service, some of which
are described in Section 4 (pp. 14) presenting applica-
tion enablers.

Data is provided to the Secure Registry Tool by appli-
cations, and is kept in registry objects. Access rights to
certain registry objects may be granted to applications

other than the application that initially stored the ob-
jects. Moreover, data can be maintained by entities that
are external to the vehicle, as long as a local application
is available to function as a conduit by interacting with
the remote application on one end and with the Secure
Registry Tool on the other. This feature allows exter-
nal entities to own data in the vehicle, while provid-
ing local applications with restricted privileges on this
data. Examples for such applications are applications
for secure logging and for selective activation of features,
presented in Sections 4.2 (pp. 15) and 4.5 (pp. 18), re-
spectively. The Code Authentication Tool of Section 3.6
(pp. 9) also utilizes this registry. In the case of the Code
Authentication Tool, the stored data is managed by the
vehicle manufacturer, or by an entity on its behalf, out-
side the vehicle.

Other than the obvious advantage of having the se-
cure storage facility being implemented once, as part of
a secure embodiment that is properly verified, there is
a second advantage. It allows applications to authorize
other applications to access and possibly manipulate (by
various methods described in Section 3.5.2.2) their data
objects. Additionally, having a single secure storage im-
plies that all data redundancy mechanisms can be im-
plemented in one place, to provide cheaper and more
reliable fail-safe storage.

3.5.2 Method

To implement access by client applications to the se-
cure registry, the Secure Registry Tool performs two
functions:

� authentication of client applications and establish-
ment of secure sessions; and

� performance of data access operations on registry ob-
jects, per requests of the client applications.

Each registry object is cryptographically protected
when stored by the tool in non-volatile storage, and ac-
cess permissions are associated with it in the form of
Access Control Lists (ACLs). Each registry object is
also identified individually, to allow for applications to
refer to it when interacting with the tool. Identification
is done using an ID assigned to the registry object when
it is created.

3.5.2.1 Embodiment The main part (a.k.a.
‘server-side’) of the Secure Registry Tool is implemented
on one controller, such as the Master Controller dis-
cussed in Section 3.3 (pp. 4), or on what is referred to
as the ‘main embodiment’ in Section 3.2 (pp. 3). This
controller has to have access to non-volatile storage.
This storage can be divided into bulk storage that is
not necessarily protected against physical or logical
tampering (e.g., flash memory that may be shared with
other components), and a much smaller non-volatile

7



www.manaraa.com

Intra-Vehicle Information Security Framework

storage medium, which is part of the tamper-protected
environment.

The server-side serves client applications that may be
installed on other controllers. Each controller that hosts
an application which is a client application, must have
installed in it a ‘client-side’ component that provides
functions for secure registry access. The client-side com-
ponent contains the minimal secure storage for storing
the single shared key with the server-side, as well as
logic required for the execution of the protocol used by
the tool.

3.5.2.2 Supported access control The set of per-
missions that are supported when enforcing access con-
trol to registry objects is richer than that of most ACLs,
in order to support vehicular use-cases, and to do so in a
way that positions as many of the security requirements
as possible on the Secure Registry Tool rather than on
the client application. The set of supported permissions
is as follows:

enumerate
Permission to know of the existence of the object.
It allows the client application to see the object
listed in a directory of objects, or to otherwise get
indications of the objects existence. Lack of this
permission causes unauthorized operations on an
existing object to report as Not Found, rather than
as Permission Denied.

read
Permission to obtain the object in its decrypted
form.

write
Permission to replace the contents of an object with
other contents, while retaining the same object ID
and associated metadata. Unlike in other platforms
that support ACLs, a write permission does not
imply a read permission. Neither does it imply a
delete permission.

delete
Permission to remove the object, rendering it un-
available and freeing its ID. This permission implies
no other permission.

append
Permission to append data to the object. This per-
mission does not imply a read permission, nor a
write permission.

increment
For numeric objects, permission to increase the
value stored in an object by any positive value that
does not cause an overflow. This permission implies
no other permission.

manage
Permission to perform all operations, and also to
set permissions for the object. This permission is
granted implicitly to the client application that cre-
ated the object. In some cases, an application with
a manage permission on an object may revoke its

own manage permission. This is allowed to increase
security in some scenarios.

3.5.2.3 Flow When a client application, running on
any controller on which the ‘client-side’ is installed, de-
sires to access data stored by the Secure Registry Tool,
it initiates a session against the ‘server-side’ of the tool.
The purpose of the session establishment is twofold:

1. to determine (securely) the identity of the client ap-
plication; and

2. to form session-key material that will be used to pro-
tect the confidentiality and integrity of the data com-
municated between the server-side of the Secure Reg-
istry Tool and the client application.

Authentication between the Secure Registry Tool and
the client application is carried out upon establishment
of a session, using a shared key between each application
and the tool. Key material may be provisioned using
the Provisioning Tool, described in Section 3.8 (pp. 13).
The keys may be equal to the keys that are provisioned
for the Key Distribution Tool of Section 3.3.

A session between a component/application and the
Secure Registry Tool consists of three phases: establish-
ment, operation, and termination. The first phase al-
lows the Secure Registry Tool to authenticate the client
application, and to establish the key that will be used
to protect the interaction between the client application
and the Secure Registry Tool during that session. This
first stage always occurs, unless a session is already in
place between the client application and the Secure Reg-
istry Tool. The second phase is the phase at which the
Secure Registry Tool serves the client application. This
phase includes zero or more transactions. Each such
transaction is an operation in which one registry object
is created, read, modified, erased, or otherwise managed.
The third phase is the session termination. The termina-
tion process tears down the session that was established
at the first phase.

Each transaction involves two messages: a request
sent from the client application to the Secure Registry
Tool (the ‘server-side’), and a response returning from
the Secure Registry Tool to the client application. The
request contains an operation, optional operation data,
and reference to a registry object, identified by its ID,
if applicable. IDs of registry objects always start with
the ID of their creator client application, so that client
applications cannot generate objects that seem as if they
were created by other client applications.

The response to the request may include information
and always includes a status code. An established ses-
sion can only carry out a single transaction at a time.
Multiple sessions, however, may be established for the
same client application at a given time.

3.5.2.4 Session security Each message is pro-
tected in terms of confidentiality and integrity using

8



www.manaraa.com

Intra-Vehicle Information Security Framework

session-specific key material that was agreed during the
session establishment phase. Session-key material is gen-
erated by means similar to those used by the Key Dis-
tribution Tool in Section 3.3 (pp. 4). Message replay
(within the scope of the session) is prevented by us-
ing running counters. The use of session-keys protects
against longer-term message replay. Session-specific key
material is valid until the session is terminated by the
client application or until the embodiment of either the
client application and/or the Secure Registry Tool are
powered down, whichever comes first.

3.5.2.5 Lookup messages The Secure Registry
Tool also supports lookup messages. These are short
interactions that are tailored for use by the Code Au-
thentication Tool, specified in Section 3.6 (pp. 9), and
by applications such as the Secure Feature Activation
Enabler of Section 4.5 (pp. 18). These short interactions
are designed to allow quick and low-overhead queries to
be sent to the registry in a secure fashion, and true/false
(‘found’ or ‘not found’) responses delivered; all without
the establishment of a session. Such interactions are
only available for lookups for certain types of registry
objects, and are suitable when the only relying (trust-
ing) party in the operation is the entity issuing the query,
and neither the registry itself nor any other component
using the registry.

The protocol used in lookup messages is specified in
Section 3.6 discussing the Code Authentication Tool.

3.6 Code Authentication Tool

3.6.1 Purpose

The Code Authentication Tool performs one of the most
fundamental functions in vehicular information system
security. It allows individual controllers to be assured,
upon boot, that they are about to execute the trustwor-
thy code that they are intended to execute. Obviously,
no assurance can be granted if the ‘valid’ code is itself
not sound and erroneously causes the execution of un-
trusted code. (This implies that aside from using a tool,
it shall be verified that the ‘valid’ code is sound and
cannot be manipulated into placing the controller into
an untrusted state.) The Code Authentication Tool as-
sures that the ‘valid’ code, as it was approved, is indeed
the code that the controller starts executing upon boot.

Put in other words, the Code Authentication Tool
helps to assure, upon controller boot, that the code that
is stored in (or next to) the controller has not been tam-
pered with. This verification is done before the con-
troller actually branches into the verified code.

The importance of code authentication cannot be
overstated. Controllers take part in various security-
related activities, interacting with other controllers (see
Sections 3.3 and 3.4), storing and retrieving secure data

(see Section 3.5), and performing other critical opera-
tions. The security model of all these operations may
break if the controller code is surreptitiously modified to
make the controller not behave as expected by the over-
all system. For example, a controller that is supposed
to retrieve an entry from the secure registry and deter-
mine engine behavior by the retrieved value, may have
its code ‘patched’ to perform an operation regardless of
the value that is retrieved from the secure registry. In
this case, the robustness designed into the registry is
nullified by an opponent that, while not being able to
change the registry, is able to cause the value obtained
from the registry to be ignored.

The Code Authentication Tool allows the automatic
detection of off-line tampering with controller code,
while allowing authorized updates to this code to be
performed, as described in Section 4.1 (pp. 15). If tam-
pering is detected, the controller may either refuse to
operate, may operate without the ability to authenti-
cate as itself against the secure registry and/or against
other controllers, or may run in a reduced functionality
mode7.

3.6.2 Method

The Code Authentication Tool is based on a routine that
computes a one-way secure hash of the entire code base
of the controller, or at least of the code range covering
the boot entry point, and compares it with reference
values of approved code. The reference values are stored
in the secure registry, specified in Section 3.5 (pp. 7).
The detachment of the on-controller verification routine
from the registry allows for code to be updated by an
authorized entity.

3.6.2.1 Embodiment The Code Authentication
Tool is installed on each controller that requires code
authentication services. This includes all controllers
that run security-critical code, other than controllers on
which code modification is physically impossible, such
as ones that execute all their code from ROM.

The implementation of the Code Authentication Tool
is minimalistic, so as to allow its incorporation into es-
sentially all controllers, including ones utilizing low-end
processors. The Code Authentication Tool logic essen-
tially reads and computes a SHA-2 [6] hash, sends it
over to the Secure Registry Tool in a lookup message,
and receives a simple response, based on which the con-
troller either halts, branches into reduced functionality
mode, or makes some key material unavailable until the
next boot. Execution of this logic is done from ROM,
as soon as the controller boots, and before branching
into any modifiable code.

7Description of the reduced functionality mode is beyond the
scope of this paper.

9



www.manaraa.com

Intra-Vehicle Information Security Framework

3.6.2.2 Flow Upon boot, the following steps take
place in order:

1. The code that is stored in pre-configured address
ranges is read into a SHA-2 [6] hash engine.

2. When read completes, the hash engine concludes the
hash computation, and the tool generates a random
(or sequential) nonce. The tool then sends its own ID,
the hash, and the nonce, symmetrically signed using
the controller’s shared key with the Secure Registry
Tool, in a specially formed lookup message.

3. The Secure Registry Tool verifies the signature based
on the key associated with the ID in the lookup mes-
sage, and looks up the hash in the registry. The
hash shall appear in a specially formed registry ob-
ject containing the hash and the ID of the controller
from which the lookup message should have arrived.

4. If a match of the ID and hash with a registry ob-
ject was found, and if the controller that issued the
lookup message has a read permission on that reg-
istry object, a positive answer is returned, signed
with the same key. The response message also in-
cludes the same nonce that was included in the
lookup message. If a match is not found, a similarly
formed negative response is sent.

5. Upon receipt of the response, the logic of the Code
Authentication Tool verifies the signature on the re-
sponse, as well as the nonce.

6. If the signature verification fails, the nonce is wrong,
or if the response is negative, the code is treated
as non-authenticated, and the processor either halts,
prevents access to key material (e.g., disables the Key
Distribution Tool), or branches to reduced function-
ality mode (if other conditions are met.)

The protocol by which a lookup message is sent and
a response is returned is illustrated in Protocol 2. C de-
notes the client — the Code Authentication Tool; IDC

is the identity of the Code Authentication Tool (the con-
troller on which it is installed); R denotes the ‘server’

— the Secure Registry Tool; h is the computed hash;
n is the generated nonce; k is the shared key between
the controller on which the Code Authentication Tool is
installed and the Secure Registry Tool; v is the verifica-
tion response (positive or negative); and SIGk denotes
a symmetric signature computed using symmetric key
k.

Protocol 2 Lookup Protocol

C → R ‘REQ.LMM.V1.00’, IDC , n, h,
SIGk(IDC , n, h)

C ← R ‘RESP.LMM.V1.00’, v, SIGk(IDC , n, v)

For a positive response to be issued by the Secure
Registry Tool, (i) the queried hash needs to exist in a
suitable registry object, (ii) the ID specified in that reg-
istry object has to match that of the querying controller,

and (iii) the querying controller has to have a read per-
mission on that object. The reason for the second re-
quirement is so code that is allowed on one controller
does not get implicitly and unintentionally approved on
other controllers. The reason for the third requirement
is to retain consistency with the data access policy of
the Secure Registry Tool.

When updating code, the relevant registry object
needs to be changed to contain the new hash. If a con-
troller is designed to manage its own code update, then
it shall have a write permission on its own relevant
registry object. This does not introduce a security risk
because the controller is presumably in a trusted state
(after code authentication passed successfully at boot)
before it can exercise its write permission to change its
reference hash. In other words, a controller of which
code was tampered, cannot not go through its boot cy-
cle to reach a state in which it can exercise its write
permission to introduce its own modified code as valid
code.

The code integrity assurance provided by the Code
Authentication Tool assumes not only that valid code
is also sound, but also that code cannot be altered in
runtime. Controllers that allow for their code to be mod-
ified by code that is not checked during boot, may re-
quire real-time integrity checking; a discussion of which
is beyond the scope of this paper.

3.7 Trusted Time Tool

3.7.1 Purpose

The purpose of the Trusted Time Tool is to provide any
requesting application on any controller with trustwor-
thy universal time. The tool provides this time informa-
tion from an embedded secure clock that is implemented
as part of the tool’s embodiment.

The term ‘trusted time’, or ‘secure time’, is frequently
used in designs of secure systems to denote different
types of assurance regarding the provided time informa-
tion. The security properties that are deemed required
by a ‘trusted time’ source, according to the purposes
described and envisioned in this paper are:

� The reported time (as stored and as reported) cannot
be modified other than by a trusted time source and
by the natural progress of time.

� Determination of the natural progress of time is done
by embedded logic that is part of the secure embodi-
ment of the Trusted Time Tool.

� Time does not have to be synchronized. It may lapse
by up to several minutes when compared to another
trusted time source. This implies that the time pro-
vided by the Trusted Time Tool may not be used for
protocol-level replay protection in some scenarios.

� Time should be protected both against roll-forward
and against roll-back. For most use-cases, protection

10



www.manaraa.com

Intra-Vehicle Information Security Framework

against roll-back shall be more stringent than protec-
tion against roll-forward.

� Time that is reported by the tool may have one of a
few possible time trustworthiness levels. It is up to
the relying application to determine if the time trust-
worthiness level that is associated with the reported
time is sufficient for its purposes. This feature is nec-
essary because trusted time information has multiple
customers in a vehicle, having different requirements
on the trustworthiness of the time data they use.

� Trusted time may be unavailable, for example, if the
Trusted Time Tool cannot assess it. Reliant appli-
cations shall always support a failure mode if they
perform a critical function, such as a function that
affects passenger safety.

3.7.2 Method

The Trusted Time Tool maintains the current time
value securely, relying on secure hardware (see Sec-
tion 3.7.2.1). It responds with the current value of the
time register to any controller that requests this value,
over a protocol that protects the integrity and fresh-
ness of the response. When responding with the cur-
rent time, the Trusted Time Tool also reports the time
trustworthiness level associated with the time it reports
(as described below). Lastly, the tool also provides an
interface for trusted parties to update the time register,
either in local proximity or over a network.

3.7.2.1 Embodiment The Trusted Time Tool con-
sists of a ‘server-side’ that is embodied in a physically
secure component. It maintains its time register using a
real-time clock that is protected to a reasonable extent
against physical tampering and against tampering by
subjecting it to extreme environmental conditions. It
may also facilitate a connection to the Secure Registry
Tool to facilitate additional protection against roll-back,
as described below in Section 3.7.2.5.

The tool also consists of a simple ‘client-side’ that is
installed on each controller that requires to obtain time
information.

3.7.2.2 Time query When any controller requires
to know the current time for a purpose that requires
trustworthy time, its ‘client-side’ of the Trusted Time
Tool obtains a shared session-key with the ‘server-side’
of the Trusted Time Tool. This can either be done us-
ing the Key Distribution Tool, or using the Secure Mes-
saging Tool. The use of the Key Distribution Tool is
recommended, because confidentiality protection is not
required for the time acquisition session.

Once a shared session-key, k, is obtained, the time
is queried according to the protocol specified in Proto-
col 3. The ‘client-side’ of the Trusted Time Tool, on
the querying controller Q, sends a message containing
an either random or sequential nonce, n, to the Trusted

Time Tool ‘server-side’ T , along with its ID. A MAC8 is
computed using k as a key, and is appended to the mes-
sage. Upon receipt and verification of the message, the
Trusted Time Tool responds with a message containing
the current UTC time, t, and the time trustworthiness
level, l, of that time value. It also appends a MAC on
those two values and the nonce n, using k as the MAC
key. The ‘client-side’ verifies the MAC and the con-
tained nonce, and notes the specified time along with
its time trustworthiness level.

Protocol 3 Trusted Time Acquisition Protocol

Q→ T ‘REQ.TT.V1.00’, IDQ, n,
MACk(‘REQ.TT.V1.00’, IDQ, n)

Q← T ‘RESP.TT.V1.00’, IDQ, t, l,
MACk(‘RESP.TT.V1.00’, IDQ, n, t, l)

The purpose of the nonce is to prevent an attack in
which responses are swapped within the same session.
If the querying controller never asks for the time more
than once per each session, the nonce can be made a
fixed part of the message. If the querying controller
does not have a reliable random number generator, the
nonce may be a monotonic counter. The counter may
reuse values (i.e., may reset) across sessions.

It is the responsibility of the querying controller to
measure the time it takes for the Trusted Time Tool
‘server-side’ to respond, and refuse to accept the re-
sponse if it arrived after a predefined constant threshold.
The ‘client-side’ must not use the incoming time value
in the response message from the Trusted Time Tool to
determine if the threshold was exceeded. It may, how-
ever, use an internal clock or counter for this purpose.

It is also within the responsibility of the querying con-
troller to determine if the time trustworthiness level, as
contained in the response message, is suitable for the
purpose for which the time was obtained.

3.7.2.3 Time setting The Trusted Time Tool al-
lows trusted entities to update the current time that is
maintained by the tool. The user, or the vehicle owner,
is never considered as such a trusted entity, both be-
cause he may be motivated to subvert the contents of
the time register, and because the user is generally hard
to authenticate.

The time may be updated, for example, by:

� the car service center; and/or
� the car manufacturer, or anyone on his behalf, over a

network.

Time trustworthiness levels Multiple entities
may be entitled to set the time, and they may be asso-
ciated with different time trustworthiness levels. When
time is set by an authorized entity, the time trustwor-
thiness level of the current time is set to the level that

8Message Authentication Code

11



www.manaraa.com

Intra-Vehicle Information Security Framework

is associated with the entity that submitted the update.
The Trusted Time Tool maintains the current time in
the time register, along with the time at which it was
obtained, and its time trustworthiness level.

Time trustworthiness erosion When a certain
time-gap between the current time and the time at
which time was last updated is reached, the Trusted
Time Tool erodes (reduces) the time trustworthiness
level, by a fixed value, to account for a possible sig-
nificant drift of the internal clock. It is important to
note that the time trustworthiness level does not reflect
the accuracy of the clock, and thus does not need to
constantly be reduced as the clock (presumably) drifts.
Rather, it reflects trustworthiness of the information,
and shall thus only be reduced when enough time passed
since the last update to make the time less reliable even
for purposes that do not require close synchronization.

Time setting protocol To update the time, a
trusted entity connects to the Trusted Time Tool us-
ing the time update protocol. The entity that issues the
update is authenticated using a symmetric key, or a pub-
lic key, that is maintained by the ‘server-side’ Trusted
Time Tool — using the Secure Registry Tool, or by the
Trusted Time Tool itself. These authentication keys
may be provisioned using the Provisioning Tool, speci-
fied in Section 3.8 (pp. 13).

The time is updated using the protocol specified in
Protocol 4, demonstrated with a public key K of the
update entity U . A copy of the public key is available
for the Trusted Time Tool, T . The protocol is initi-
ated by the tool, but may be triggered by the update
entity in some installations. The protocol starts with
the tool issuing a random nonce, n. The tool assures
that a reasonable amount of time passes between the
issuance of the REQ message and the arrival of the RESP
message. Upon reception of the response, the tool veri-
fies the nonce (against a stored copy), and the signature
on the nonce and the time information, t, using the reg-
istered public key matching the identity of the update
entity, IDU . If verification passes, the response arrived
in a timely manner, and the time trustworthiness level
associated with the entity denoted as IDU is higher than
that of the currently known time, then the tool records
the provided time as the current time, and the time
trustworthiness level associated with IDU as the level
of the current time. The time at which the time infor-
mation was obtained is also recorded to support time
erosion as specified earlier in this section.

Protocol 4 Trusted Time Update Protocol

U → T ‘TRIG.TTU.V1.00’, IDU

U ← T ‘REQ.TTU.V1.00’, IDU , n
U → T ‘RESP.TTU.V1.00’, IDU , t, SIGK(n, t)

If the trustworthiness level associated with the source

is lower than the time trustworthiness level associated
with the current time, then the Trusted Time Tool shall
carry out the protocol, but not update the time, so not
to erode the time trustworthiness level of the time in-
formation it has.

3.7.2.4 GPS signals Some trusted time systems
utilize GPS signals to update their local time. GPS sig-
nals are convenient means and are often received for nav-
igation purposes anyway. However, they are limited in
their level of trustworthiness, because GPS signals can
generally be spoofed [13, 12]. GPS signals can provide
time measurements that are more trustworthy than time
entered by the user, suitable, e.g., for low value DRM
purposes, but are probably not trustworthy enough for
other uses, such as for the collection of driving informa-
tion that shall be usable as evidence in court.

The current architecture allows the utilization of GPS
signals by assigning them with a lower time trustwor-
thiness level, when compared to time that was obtained
over a secure connection from a trusted source.

When using GPS signals to set the current time, the
GPS feed may be assigned a time trustworthiness level
of b, where time obtained over a trusted link from a more
trusted source (e.g., a time service provided by the car
manufacturer over a cellular connection) is assigned a
level a, and where a > b.

As long as the Trusted Time Tool has a current time
with time trustworthiness level of a, it will ignore the
GPS time updates, having a lower level. Over time, the
time trustworthiness level erodes. If a source of level
a ever offers an updated time, the tool will obtain an
updated time, and reset the time trustworthiness level of
the current time back to a. If no update is available from
a source of level a until the time trustworthiness level of
the current time eroded to a level below b, a GPS signal
will be used to update the time and assign it with a
time trustworthiness level of b. The Trusted Time Tool
will use the time it received from the GPS until a source
of level a offers a more trustworthy time. Until a more
trustworthy time is obtained, some applications in the
vehicle that use the Trusted Time Tool may refuse to
use the provided time (of level b), whereas less critical
components will use the time provided by the tool in
spite of its relatively low trustworthiness value.

3.7.2.5 Roll-back prevention The current time
register is maintained using physical security means, as
specified in Section 3.7.2.1 (pp. 11). Physical protection
of the embodiment, along with the lack of an interface
to change the time (other than by trusted parties, as
specified in Section 3.7.2.3), prevents an opponent from
being able to set the current time register, either to a
value in the future or to a value in the past.

Notwithstanding, roll-back, which is often considered
as a more significant threat than roll-forward, can be
further prevented by relatively inexpensive means (rel-

12



www.manaraa.com

Intra-Vehicle Information Security Framework

atively inexpensive — in comparison to the cost of the
hardware protection employed). This additional protec-
tion is achieved by noting the current time at certain
intervals in a secure storage space that itself cannot be
rolled-back, and which is protected from illegal modifi-
cation. Such a storage space is offered by the Secure
Registry Tool of Section 3.5 (pp. 7).

Each time the current time value is served by the tool,
or once in a predefined interval, the Trusted Time Tool
records the current time in a specified registry object
for which the Trusted Time Tool has exclusive read
and write permissions. Upon and before modifying this
object (unless a time update is being performed), the
Trusted Time Tool reads the contents of this object and
verifies that the time currently stored in it is indeed
previous or equal to the currently known time that is
about to be written. If the already-recorded time is
ahead of (that is, greater than) the current time, then
a roll-back has taken place, and the current time value
shall be set to ‘Unavailable’.

The current time changes away from an Unavailable
value only by an authenticated update, according to Sec-
tion 3.7.2.3.

3.8 Provisioning Tool

3.8.1 Purpose

All tools designed and presented so far require certain
key material to be provisioned to them before they can
be functional. For example:

� The Key Distribution Tool requires each instance of
it (on each controller) to have a shared symmetric key
with a Master Controller.

� The Secure Registry Tool requires the controller run-
ning each client application to have a shared symmet-
ric key with the ‘server-side’ of the tool.

� The Trusted Time Tool authenticates update entities
using pre-established key material.

The keys are provisioned to the controllers in struc-
tures that consist at least of (i) 256-bit key material,
and (ii) identity associated with the key. Other than
symmetric keys, in some cases reference public keys are
also provisioned, such as for the Trusted Time Tool to
authenticate time update entities.

3.8.2 Method

Provisioning is done by allocating slots, somewhat sim-
ilarly to the model used by PKCS#11 [11]. Each tool
has a (usually fixed) number of slots that can be used to
store symmetric or public keys, one per each slot. Key
provisioning is done by providing the tool with an en-
crypted structure containing the key to be added, the
associated information (such as the ID of the key, or of
the controller the key is shared with), and the identity of

the slot in which the key is to be placed. Slot identifiers
consist of the key type and a sequential number.

Slots are filled with, and freed from, key material us-
ing provisioning messages, as described below. These
messages arrive from authorized provisioning sources,
also described below.

3.8.2.1 Embodiment The Provisioning Tool has
to be installed on every controller that hosts any other
tool that uses keys, unless the tool uses only pre-loaded
keys that are provisioned during fabrication. This in-
cludes essentially all embodiments that utilize any of the
tools mentioned in this document. Provisioned keys are
required also on instances of the ‘client-side’ implemen-
tation of tools. For example, every controller that uses
the Secure Registry Tool, and thus which has installed
the client-side portion of the Secure Registry Tool, is
required to have a local installation of the Provisioning
Tool. Due to this requirement, the Provisioning Tool
was designed to be deployed also on low-end controllers,
and also on components lacking a processor.

3.8.2.2 Interface The Provisioning Tool interacts
with its environment by receiving and responding to
provisioning messages coming from authorized sources.
These messages are used to manage the stored keys.
There are at a minimum three types of provisioning mes-
sages that are supported:

enumerate
Lists IDs of keys (including their key types), stored
in all slots. The keys themselves are not listed.

set
Fills a given slot with a key, associated with an ID,
if the slot is empty.

clear
Deletes the contents of a given slot, making it avail-
able.

Messages are encrypted and authenticated. To sim-
plify the design and implementation of the Provisioning
Tool, and also due to the fact that there is no strong
reason to have it otherwise, there is only one level of au-
thorization for the submission of provisioning messages.
A single authorization level grants permission to submit
all three types of messages, as explained in the following
subsection.

3.8.2.3 Message security It must be assured that
only authorized entities can submit provisioning mes-
sages. Otherwise, opponents can bypass most security
mechanisms simply by making controllers use keys of
which they have a copy. It is also essential to protect
message confidentiality, because the messages carry key
material and may be communicated over untrusted bear-
ers.9

9Untrusted bearers are not necessarily the Internet alone. The
ability to compromise provisioning messages carries with it the

13



www.manaraa.com

Intra-Vehicle Information Security Framework

Provisioning keys and delegation The root of
trust for provisioning is a single symmetric 256-bit key
that is fabricated into the embodiment of each instance
of the Provisioning Tool. This key is known only to the
entity that fabricated the embodiment of the tool. This
key is denoted as KM .

Each provisioning message and its response have their
confidentiality and integrity assured by a symmetric pro-
visioning key, KP . It is possible that KP = KM , but it
is not required. It is often the case that the fabrication
entity is not the entity that provisions the operational
provisioning keys into the components it produces. It is
therefore possible for the fabrication entity holding KM

to delegate provisioning authority to another key — KP .
The operational provisioning key KP may be generated
by the owner of KM and delivered to the entity doing
provisioning, or it may be generated by the provisioning
entity and authorized by the owner of KM . Once KP is
authorized by the owner of KM to issue (certain) pro-
visioning messages, KM is no longer required for such
provisioning. This authorization of KP is irrevocable.

Indication of the authorization of KP by the owner of
KM , as well as the value of KP , are communicated to
the Provisioning Tool by a delegation structure, which
is part of each provisioning message. The provisioning
message contains a delegation structure of KP by KM

as a preamble, followed by the body of the message,
which is then authorized (and signed) by KP .

The owner of KP may further delegate the authority
to issue provisioning messages to KP ′ in the same form,
and so forth. The preamble of the provisioning message
will then include a chain of delegation structures. The
(one or more) proper delegation structure/s shall appear
in every provisioning message. The Provisioning Tool,
being suited also for low-end platforms, is not expected
to retain provisioning keys other than KM .

Second-order delegation, as described above, is among
the most useful features of the Provisioning Tool. It
is foreseen that not only that the fabricator of the con-
troller running the tool will not do the provisioning, but
the purchaser (often the device maker), will not provi-
sion all controllers either. It is possible that some of the
provisioning may be done by the car dealership, or by
other trusted parties.

Partial delegation Delegation may be partial.
When the owner of KM delegates the provisioning au-
thority to the owner of KP (or when the owner of KP

delegates to the owner of KP ′ , and so forth), he may
wish to delegate authority to provision only keys of cer-
tain key types or keys for particular slots.10 To support

ability to bypass most security mechanisms employed by the var-
ious tools. Since the car dealership (or service center) is in some
scenarios a possible opponent in the system, even the local wire
connecting the maintenance terminal to the car at the service
center is considered to be an untrusted bearer.

10Consider that due to the irrevocable nature of delegation, non-
partial delegation of KM to KP is effectively similar to handing

this, the delegation structure consists of an indication
of the key type that may be provisioned by the provi-
sioning message in which it is enclosed. When a chain
of multiple delegation structures is sent, the indicated
key type shall be identical in all components (levels) of
the chain. This requirement implies that the owner of
KP cannot delegate authority to provision keys of key
types that he is not authorized to provision himself.

It is possible to delegate the authority to provision
more than one key type. This is done by issuing multi-
ple delegation structures to the same entity. Each such
structure covers one key type. The creator of the provi-
sioning message is responsible for including the suitable
delegation structure in the message.

3.8.2.4 The provisioning message Figure 2
shows the structure of a typical provisioning message,
with two delegation structures.

Figure 2: A sample provisioning message

To protect the confidentiality and integrity of provi-
sioning messages, they are encrypted using an authen-
ticated encryption mode of AES [5] using the 256-bit
key KP . The message includes delegation structures
suited for the key type of the key that is set, deleted, or
queried by the message. The included delegation struc-
tures chain from KM to KP . The main component of
each delegation structure is the value of the lower-level
key, e.g., KP , encrypted using the higher-level key, e.g.,
KM . The authenticity of the delegation structures is
verified by the Provisioning Tool independently from
the authenticity of the provisioning message as a whole.

The response to the provisioning message is sent from
the Provisioning Tool, confidentiality- and integrity-
protected using the same KP that was used to pro-
tect the provisioning message, unless the authentication
phase failed either for the message or for any of the del-
egation structures it contained. If such authentication
errors occurred, an error is returned in plain-text.

4 Application Enablers
Architecture

The purpose of the various tools detailed in Section 3 is
to provide security functionality that serves security ap-
plications. This section details some of the security ap-

over a copy of KM to the owner of KP .

14



www.manaraa.com

Intra-Vehicle Information Security Framework

plication enablers that utilize components of the toolbox
to provide for real use-cases that involve security consid-
erations. Clearly, the application enablers described in
this section are merely examples for security related ap-
plications that can benefit from the toolbox.

Each subsection of this section presents an applica-
tion enabler, with subsections detailing its purpose, the
method in which the application can run to fill its pur-
pose, and the toolbox components that are used.

4.1 Secure Code Update Enabler

4.1.1 Purpose

The need to update the firmware of controllers is likely
to occur at least a few times throughout the lifetime
of the vehicle. The Secure Code Update Enabler is
an application enabler that allows controller code to
be updated securely, with authorization done through
a central location in the vehicle. The enabler is respon-
sible for obtaining signed code images and destination
controllers, connecting to the controllers to be patched
securely, providing them with the new code image or up-
date information, and updating the registry accordingly,
so that the controller boots properly next time.

For the enabler to work, it is required that the des-
tination controller has an application installed which
allows the reception and processing of new code infor-
mation. It is not possible to update firmware code on
controllers that do not support firmware update, other
than by connecting to their firmware storage medium
using other agents that run an update application and
connect to that storage medium.

4.1.2 Method

Code update involves the following steps:

1. The Secure Code Update Enabler obtains the new
code image (or update information) and the ID of
the target controller.

2. The enabler obtains the relevant public key of the
entity that is authorized to introduce code to that
controller, from a registry object kept by the Secure
Registry Tool.

3. The enabler checks an asymmetric digital signature
on the code, its destination controller ID, and its ver-
sion information, to assess its authenticity and appli-
cability to the destination controller.

4. Following a positive verification, the enabler initi-
ates a secure connection with the destination con-
troller, either using the Key Distribution Tool (see
Section 3.3) or using the Secure Messaging Tool (see
Section 3.4).

5. Over the secure session with the destination con-
troller, the enabler initiates the code update, and
pushes the new code image, or update information,
to the destination controller.

6. The controller receives the code update (as code
chunks, deltas, or any other suitable format) over the
secure connection, and updates its code accordingly.

7. The enabler, having a write permission over the rel-
evant registry object, updates the object in the Se-
cure Registry Tool. The update is necessary if the
controller uses the Code Authentication Tool speci-
fied in Section 3.6 (pp. 9), so the modification of code
does not cause the Code Authentication Tool to fail
the boot process.

The concept of checking the validity of code updates
at a central location (the Secure Code Update Enabler),
rather than at the destination controller, serves the pur-
pose of eliminating the requirement for every (possibly
low-end) controller to be able to check asymmetric sig-
natures and certificates, to be provisioned with public
keys, and to handle update authorizations, separately.
Instead, the controllers have a pre-provisioned trust re-
lationship with the Secure Code Update Enabler, which
makes update decisions for them.

4.1.2.1 Utilized tools This enabler makes use of
the Secure Registry Tool to securely store public keys of
approved update sources and to record valid code hashes
that are later checked by the Code Authentication Tool.
It also uses the Key Distribution Tool or the Secure
Messaging Tool to deliver the approved code update to
the destination controller.

4.2 Secure Logging Enabler

4.2.1 Purpose

The purpose of the Secure Logging Enabler is to collect,
retain, and serve back transaction logs of all sorts. For
example, the enabler can be used for:

� Drive recording (e.g., logging driving speed, dura-
tions, and routes);

� Service and maintenance logbook (e.g., times and
odometer readouts at service sessions);

� Collection of troubleshooting information.

The log information has to be protected from tam-
pering. In many cases, even the entity that generates
logged transactions shall not be able to remove or mod-
ify such transactions after they were recorded.

4.2.2 Method

This enabler coordinates interaction with the Secure
Registry Tool. It manages the interaction of the reg-
istry tool with entities of three types, each installed with
a suitable component of the enabler depending on the
type of the entity:

15



www.manaraa.com

Intra-Vehicle Information Security Framework

� Transaction generation entities: these entities
are the ones that create the data that is logged. They
are not necessarily privileged to read the log (which
may also contain data from other transaction gener-
ation entities), or to remove transactions that they
generated. Examples of such entities are GPS, odome-
ters, and maintenance modules.

� Log reading entities: these entities are allowed to
view certain logs, but not necessarily to change them.
Examples are equipment at the service centers, or dis-
plays serving the owner of the vehicle.

� Log clearing entities: these entities are allowed to
clear the logs. These are usually entities associated
with the vehicle maker. In some cases, there are no
such entities and logs are only truncated based on age
of transactions. Such entities may in some rare cases
be privileged to also modify log entries.

The enabler as a whole is configured to support a set
of logs. Each log is logically defined by its types of
data, the IDs of controllers that generate the data, and
events that trigger the collection of this data into log
transactions. Upon a trigger event, the enabler compo-
nent connects to each relevant controller and obtains rel-
evant information. The data-generating controller may
be initiating the delivery of data (‘push’ rather than
‘pull’) in some scenarios. The enabler component then
composes a log transaction and connects to the Secure
Registry Tool to have it recorded. This is done by ex-
ercising its append privilege on the registry object that
is used to store the log . By restricting the privilege of
the enabler component to append, it is prevented from
reading log transactions written by other components
of the enabler, even if these log transactions were writ-
ten to the same log. It is also prevented from changing
any items once they were recorded. Only components
of the Secure Logging Enabler that serve “log clearing
entities” (see above) require write permissions on the
relevant registry objects.

For components of the Secure Logging Enabler that
serve devices such as maintenance-related counters, such
as odometers, the enabler component can run with
increment privileges only. This will prevent the device
from being able to roll back important counters, even if
the device is itself completely compromised.

When serving entities that are allowed to read the log,
the Secure Logging Enabler component exercises read
privileges, to be able to convey log information.

Obviously, more than one instance of any of the the
enabler components may be installed, each such in-
stance having different privileges on the log data, de-
pending on the type of entity it serves and the log it
uses.

4.2.2.1 Utilized tools The Secure Logging En-
abler components utilize the Key Distribution Tool or

the Secure Messaging Tool to communicate with vari-
ous entities that feed data to, or read data from, the
log. They use the Secure Registry Tool to store log
transactions into logs in a way that prevents log data
from being removed, or even read, by unauthorized en-
tities. They may also unitize the Trusted Time Tool
for obtainment of trustworthy time information to be
associated with entries.

4.3 Part Authorization and
Management Enabler

4.3.1 Purpose

It is often important to be able to tell if parts of the
vehicular system are genuine and/or approved. Such
determination is important for reasons of safety, liabil-
ity, and maintenance. Even if detection of a counterfeit
(or an otherwise unauthorized) part shall not result in
its effective extraction from the vehicular system, it is
often important to note the status of this part, so war-
ranties can be restricted, other components can treat
the non-genuine part accordingly, or so the service cen-
ter is warned and may notify the driver. The driver may
even be notified directly of a non-genuine part that was
installed in his car.

4.3.2 Method

4.3.2.1 Authenticity implied by provisioning
If a vendor can clone a part to the level that it be-
haves exactly like the original part, then its detection
is impossible. However, if a genuine part contains a
cryptographic component that is impractical to dupli-
cate, then the existence of that component can often be
verified and be seen as attesting for the authenticity of
the part in which it is installed. To be effective, the
cryptographic component shall be one that cannot be
duplicated easily and one that can be authenticated by
the authenticity verifier.

A cryptographic component with such properties is
part of the implementation of the tools specified in Sec-
tion 3. Specifically, it is part of the implementation of
the Key Distribution Tool. Therefore, the ability to pro-
vision implementations of the Key Distribution Tool on
original parts with key material that is not provisioned
to non-genuine parts allows other controllers using the
Key Distribution Tool to authenticate the original parts.

The Key Distribution Tool leverages on a pre-shared
key between each approved controller and a Master Con-
troller to provide shared session-keys. This implies that
for a controller to be able to engage in a key agree-
ment session using this tool, it needs to have been pro-
visioned with a symmetric key that is shared with the
Master Controller of the vehicle. To determine that a
controller was provisioned with key material, the ver-
ifying application needs to initiate a brief interaction
using a shared session-key issued by the Key Distribu-

16



www.manaraa.com

Intra-Vehicle Information Security Framework

tion Tool. Given a controller ID, a success in the es-
tablishment of a workable secure session with the con-
troller holding that ID implies that the controller was
properly provisioned with a key shared with the Master
Controller. Proper provisioning of keys that are shared
with the Master Controller presumably attests for the
authenticity of the component.

This method puts the burden of authorizing parts on
the entity that does the provisioning of key material.
The entity that is responsible and authorized for provi-
sioning is expected to only provision keys to controllers
in authentic parts. This is a stringent requirement that
is sometimes difficult to fulfill.

4.3.2.2 Authenticity as an attribute The key
provisioning entity, while being trusted by the Part Au-
thorization Enabler (as well as by probably all other
components), may wish to provision key material to con-
trollers of parts that may not be authentic, or that it
cannot determine to be authentic. To support this case,
it is made possible for the provisioning entity to create a
registry object in the Secure Registry Tool that, for each
provisioned controller identified by its ID, stores data
that is readable by all relying controllers/applications
in the vehicle. This object, hereafter referred to as
the attestation document, contains indications of the
authenticity and trustworthiness of the part in which
the controller is installed, in any suitable language.

For example, an attestation document may note that
the part which contains controller of ID ‘XYZ’ is okay
to interact with but is not to be trusted to carry out
particular operations, or which shall not obtain particu-
lar types of data. For example, proprietary components
by non-approved vendors may interact with in-vehicle
receivers and displays, but may not be entitled to mod-
ify security controls, or have access to certain types of
information.

Permission to write to this object will be granted
only to applications that are in a position to determine
the authenticity, suitability, and/or trustworthiness of
the component to which the attestation document be-
longs; not necessarily associated with the entity that
did the key provisioning. These applications may reside
outside the vehicle, and may be controlled, for example,
by the vehicle maker.

In some scenarios, an application at the vehicle
maker’s facility may issue certificates for components,
and these certificates can be verified by an application
in the vehicle, which will in-turn update the various
attestation documents accordingly, for all relying appli-
cations in the vehicle to consult.

The Part Authorization Enabler is thus not an in-
dependent application running on one controller, but
rather it is a set of operations utilizing toolbox func-
tions to obtain:

� the ability to distinguish between provisioned con-

trollers (and hence, parts) and non-provisioned con-
trollers;

� the ability to associate provisioned controllers (and
hence, parts) with securely stored data that cannot
be changed by the controllers themselves, and which
indicates how these parts shall be treated by other
applications in the vehicle; and

� ability for other applications to view the aforemen-
tioned data and determine their behavior when inter-
acting with controllers according to this information.

4.3.2.3 Utilized tools To obtain the features listed
above, relying applications utilize the Key Distribution
Tool (to authenticate controllers and thus determine if
they were provisioned properly), and the Secure Reg-
istry Tool to obtain information that indicates how the
controllers are to be treated by the relying applications.
Relying applications may also utilize the Code Authen-
tication Tool to be assured that their firmware was not
altered to cause them to treat unauthorized or non-
genuine parts differently than intended.

4.4 Theft Prevention Enabler

4.4.1 Purpose

The motivation for preventing vehicle theft is obvious.
The purpose of the Theft Prevention Enabler is to uti-
lize the tools defined in Section 3 to securely accomplish
conditional disablement of essential vehicle components
in certain scenarios that may indicate that the vehicle
is operated by an unauthorized individual.

4.4.2 Method

Two types of components are needed to implement theft
prevention: (i) components that are necessary for vehi-
cle operation, and (ii) components that can obtain in-
formation that allows to determine that the user of the
vehicle is authorized to operate the vehicle. The more
components of type-(i) available, the more robust the
solution is. Type-(i) components consist of at least the
ignition system and the gas pump [14], and may also
contain the gear shifting logic and other essential cir-
cuits. Typical type-(ii) components are biometric read-
ers and RFID receivers that challenge hand-held remote
controls or key-fobs that are presumably carried only by
the authorized user/s.

To accomplish theft prevention, the type-(ii) compo-
nent shall retain, in volatile memory, the status of au-
thorization, which indicates whether the user was chal-
lenged and responded properly or not. The type-(i) com-
ponent/s is/are to consult the type-(ii) component se-
curely, and disable the essential mechanism (at sensible
timing) if the type-(ii) component indicates unautho-
rized use. This communication between the two types
of components can be obtained by an open secure ses-
sion on which driver authorization status is periodically

17



www.manaraa.com

Intra-Vehicle Information Security Framework

pushed by the type-(ii) component to the type-(i) com-
ponents.

4.4.2.1 Utilized tools The Theft Prevention En-
abler utilizes the Key Distribution Tool or the Secure
Messaging Tool to establish trustworthy signalling be-
tween both types of components. Each component may
also utilize the Code Authentication Tool to assure that
a car thief did not tamper with the firmware to make
the component ignore relevant state information, or to
otherwise not operate as expected.

4.5 Secure Feature Activation Enabler

4.5.1 Purpose

Vehicles are sometimes manufactured with features that
are not made available to all buyers. Car manufacturers
sell cars that support different feature sets for variable
prices, sometimes targeted at different customer groups.
Since manufacturing cars of several profiles incurs sig-
nificant added costs in comparison to a “one size fits
all” design, some features are often designed to be en-
abled or disabled at the firmware (or configuration data)
level, while the car hardware is identical. This not only
reduces cost, but it also allows the user to purchase
extended options for his vehicle post-purchase of the ve-
hicle.

Premium features are worth money, and along with
this worth come attempts to subvert the mechanism so it
enables features in an unauthorized fashion. The threat
model is more complex than a car owner attempting
to enable features for which he did not pay. In some
cases, a car dealership may desire to activate features
on vehicles sold to end customers either for promotion
or for pay, but without notifying (and paying) the car
manufacturer. A secure system for feature activation
shall on one hand allow a dealership to activate features
on cars that it sells, but on the other hand assure that
it cannot do so without either:

� the permission of the car manufacturer for such acti-
vation in advance; or

� authentic reporting on activation to the car manufac-
turer, after the fact.

The Secure Feature Activation Enabler is aimed at pro-
viding this feature.

4.5.2 Method

The main part of the Secure Feature Activation Enabler
is an application running on a controller in the vehicle.
This application, hereafter referred to as the activation
management application, manages the activation of fea-
tures. It connects to the Secure Registry Tool, where
parameters of activated features are recorded, and to
a back-end application that runs in the car dealership
or service center. That back-end application is further

connected to an application running at the facility of
the car manufacturer.

Also in the vehicle are other controllers that actu-
ally carry out the operations involved in the optionally-
activated features. These controllers utilize read per-
missions on the Secure Registry Tool to check the sta-
tus of such may-be-activated features, before carrying
out operations that depend on the activation status of
these features. For example, an application that down-
loads map updates for the navigation system may check
in the registry if such a download feature is activated,
and has not expired. As another example, a controller
associated with the operation of the motor and/or gas
pump may consult the registry to learn the maximum
horsepower that the motor is allowed to produce.

The registry object that contains information on the
activation status of a particular feature is likely to have
set a write permission for the aforementioned activa-
tion management application, and a read permission for
the controller/s that act based on the activation status
of the feature. The activation management application
is responsible for updating the relevant registry objects
based on requests of the back-end application at the ser-
vice center or dealership, but only after the conditions
involving permission of the car manufacturer were met.

Figure 3 illustrates the entities involved in feature ac-
tivation.

4.5.2.1 Feature certificates To assure the ap-
proval of the car manufacturer, a request to activate a
feature (or otherwise change its properties) is provided
in a feature certificate to the activation management ap-
plication. This certificate is a data object signed using
a private key of the car manufacturer, and contains at
least:

� the ID of the vehicle (e.g., in the form of an ID of the
activation management application in the vehicle);

� the ID of the feature involved;
� the feature parameters, if applicable (activation sta-

tus, activation parameters, such as expiry date, or
terms in which the feature can be used);

� a time-stamp token for the certificate;
� a signature computed by an application running at

the site of the car manufacturer, using the car manu-
facturer’s private key.

The activation management application verifies this cer-
tificate and sets the relevant registry objects to align
with the feature certificate, if the certificate was veri-
fied properly.

Since the feature certificate has to be signed by the
car manufacturer, and since it holds the ID of the in-
stance of the activation management application, the
car manufacturer is always aware of features that are
activated on individual vehicles. The car manufacturer
issues the feature certificates per request, logs and bills

18



www.manaraa.com

Intra-Vehicle Information Security Framework

the relevant entity, assuming the certificate was used to
activate the feature.

Figure 3: Entities involved in feature activation

4.5.2.2 Feature certificate revocation It is pos-
sible that once a feature certificate was issued, it is never
used. For example, it may be the case that the dealer-
ship sets to sell a certain number of cars with particular
features enabled, but due to market conditions, it is
driven to sell lower-end feature sets instead. The holder
of a feature certificate may thus request a refund for
the certificate, given that it was not used. To do so, the
feature certificate is presented to the activation manage-
ment application in the vehicle, not for consumption but
for revocation. The activation management application
may sign a revocation attestation that is delivered to the
back-end application and from there on to the applica-
tion at the car manufacturer’s site. The car manufac-
turer, after verifying the revocation attestation, refunds
the cost of the certificate (and feature) involved. The
revocation attestation, signed by the activation manage-
ment application, indicates that the activation manage-
ment application in the vehicle saw the feature certifi-
cate specified in the revocation attestation and confirms
to never accept this feature certificate. Shall the feature
be required in the future, a new feature certificate will
have to be issued.

4.5.2.3 Utilized tools The activation management
application in the vehicle utilizes the Secure Registry
Tool to record parameters of activated features, and to
keep a public key of the car manufacturer, by which
feature certificates are verified. It may also use this
registry to keep symmetric or private keys needed for
revocation attestations. This application enabler may
also use the Code Authentication Tool to protect itself
from tampering. Tampering with the code of the acti-
vation management application may lead to activation
of features without authorization.

Other controllers that are set to operate in accordance
with activation status of features may also utilize the
Code Authentication Tool for a similar purpose.

References

[1] M. Bellare, P. Rogaway, and D. Wagner. The
EAX mode of operation: A two-pass authenticated-
encryption scheme optimized for simplicity and effi-
ciency. In In Fast Software Encryption 2004, 2004.

[2] Tom Berson. Skype security evaluation. Technical
report, October 2005.

[3] Maureen C. Curran. ‘auto show’ of a different kind:
The automotive software workshop 2006. News-
room — California Institute for Telecommunica-
tions and Information Technology.

[4] Morris Dworkin. Recommendation for block cipher
modes of operation: The CCM mode for authenti-
cation and confidentiality. In National Institute of
Standards and Technology, NIST Special Publica-
tion, 2004.

[5] FIPS. Advanced Encryption Standard (AES).
National Institute of Standards and Technology,
November 2001.

[6] FIPS. Secure Hash Standard. National Institute of
Standards and Technology, August 2002.

[7] Tadayoshi Kohno, John Viega, and Doug Whiting.
CWC: A high-performance conventional authenti-
cated encryption mode. In Proceedings of FSE
2004, LNCS 3017, pages 408–426. Springer-Verlag,
2004.

[8] D. A. McGrew and J. Viega. The galois/counter
mode of operation (GCM). NIST Modes Operation
Symmetric Key Block Ciphers, 2005.

[9] Hisashi Oguma, Akira Yoshioka, Makoto
Nishikawa, Rie Shigetomi, Akira Otsuka, and
Hideki Imai. New attestation based security
architecture for in-vehicle communication, 2008.

[10] Phillip Rogaway, Mihir Bellare, and John Black.
OCB: A block-cipher mode of operation for efficient
authenticated encryption. ACM Trans. Inf. Syst.
Secur., 6(3):365–403, 2003.

[11] RSA Laboratories. PKCS #11: Cryptographic to-
ken interface standard, 2004.

[12] Bruce Schneier. GPS spoofing. Schneier on Secu-
rity, September 2008.

[13] Jon S. Warner and Roger G. Johnston. GPS spoof-
ing countermeasures. Technical report, December
2003.

[14] Wikipedia. Immobiliser — wikipedia, the free en-
cyclopedia, 2009. [Online; accessed 1-March-2009].

19


	Introduction
	The Motivation
	Internal vs. External Security Aspects
	What We Aim to Provide

	Design Goals
	Toolbox Design Goals
	Application Enablers Design Goals

	Architecture of the Security Toolbox
	Overview
	Underlying Core
	Key Distribution Tool
	Purpose
	Method

	Secure (Intra-Vehicle) Messaging Tool
	Purpose
	Method

	Secure Registry Tool
	Purpose
	Method

	Code Authentication Tool
	Purpose
	Method

	Trusted Time Tool
	Purpose
	Method

	Provisioning Tool
	Purpose
	Method


	Application Enablers Architecture
	Secure Code Update Enabler
	Purpose
	Method

	Secure Logging Enabler
	Purpose
	Method

	Part Authorization and Management Enabler
	Purpose
	Method

	Theft Prevention Enabler
	Purpose
	Method

	Secure Feature Activation Enabler
	Purpose
	Method



